a2 United States Patent

Dhavale et al.

US009141492B2

US 9,141,492 B2
Sep. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54) TRANSPARENTLY MIGRATING A STORAGE
OBJECT BETWEEN NODES IN A
CLUSTERED STORAGE SYSTEM

(71)
(72)

(73)
")

@
(22)
(65)

(63)

(1)

(52)

(58)

Applicant:

Inventors:

Assignee:

Notice:

Appl. No.:

Filed:

NetApp, Inc., Sunnyvale, CA (US)

Poonam Dhavale, Sunnyvale, CA (US);
Susan M. Coatney, Cupertino, CA (US);
Steven S. Watanabe, Sunnyvale, CA

Us)

NetApp, Inc., Sunnyvale, CA (US)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by O days.

14/278,314

May 15, 2014

Prior Publication Data

US 2014/0317159 Al

Oct. 23, 2014

Related U.S. Application Data

Continuation of application No. 12/626,551, filed on
Nov. 25, 2009, now Pat. No. 8,751,533.

Int. Cl1.

GO6F 17/30

GO6F 7/00

GO6F 1120

GO6F 3/06
U.S. CL

CPC

Field of Classification Search

USPC

(2006.01)
(2006.01)
(2006.01)
(2006.01)

. GOGF 11/2033 (2013.01); GOGF 3/0647
(2013.01); GOGF 7/00 (2013.01); GOGF 17/30
(2013.01); GOGF 17/30079 (2013.01); GO6F
17/30091 (2013.01); GOGF 17/30203 (2013.01):
GOGF 17/30067 (2013.01); GOG6F 17/30194
(2013.01); GO6F 17/30221 (2013.01)

See application file for complete search history.

707/620

{700

Receive aggregete migralion request
yil]

!
'

Fonyard request to source
B

|
Verfy destiafion s configured ¥
sereion aggregale
m

Vesfy surce is configued to aciizle
migraion
I

1

Ofiing aggregate at source
b

(56) References Cited

U.S. PATENT DOCUMENTS

6,772,161 B2 8/2004 Mahalingam et al.

7,058,846 B1* 6/2006 Kelkaretal. 714/4.4
7,296,068 B1 11/2007 Sarma et al.

7,689,862 B1* 3/2010 Bharthulwar etal. 714/13
7,941,511 B2* 5/2011 Takamoto et al. 709/220
8,135,981 B1* 3/2012 Gawalietal.c....... 714/5.1

(Continued)
OTHER PUBLICATIONS

“Data ONTAP@ 7.0 V-Series Systems—Software Setup, Installa-
tion, and Management Guide”, Dec. 15, 2005, 175 pages.

(Continued)

Primary Examiner — Kuen Lu
(74) Attorney, Agent, or Firm — Gilliam IP PLLC

57 ABSTRACT

A storage object is migrated between nodes by a source node
automatically verifying that another node is configured to
service the storage object and changing ownership of the
storage object based on the verifying. A cluster manager for
the clustered storage system receives a request and provides
the request to the source which owns the storage object. The
source verifies that the destination is configured according to
a predetermined configuration for servicing the storage
object. Based on the verifying, the source offlines the storage
object and updates ownership information of the storage
object, thereafter allowing the destination to online the stor-
age object. The cluster manager further provides the updated
ownership information to all the nodes in the cluster, so an
access request intended for the storage object may be received
by any node and forwarded to the destination using the
updated ownership information to effect a transparent migra-
tion.

20 Claims, 8 Drawing Sheets

Update aggregale ownsrship
£

|

atify destinaton of uplate
L&)

]

Onl agprgate o destialion
Ji:q

|

Resats clisns sequest lo destination

US 9,141,492 B2

Page 2
(56) References Cited “U.S. Appl. No. 12/626,551 Final Office Action”, Final Office
Action, Jun. 28, 2012, 33 pages.
U.S. PATENT DOCUMENTS “U.S. Appl. No. 12/626,551 Office Action”, Non-Final Office Action,
2003/0182427 Al 9/2003 Halpern Nov. 9, 2011, 35 pages.
2010/0114889 Al 5/2010 Rabil et al. Huang, et al., “Load Balancing for Clusters of VOD Servers”, 2004,
OTHER PUBLICATIONS pp. 113-138.

“Spinnaker Networks, Inc .. “NFS Industry Conference””, Oct.))
22-23, 2002, 30 pages. * cited by examiner

US 9,141,492 B2

Sep. 22, 2015 Sheet 1 of 8

U.S. Patent

(sl marager
i »
= Node 204
Hohoal
Rigraton
N § w
Wohosd sy

£
-

| s

Higeation

sysh
bl

Naodde |

k)

Cisker switehing
fabrig

8

'®

N
i

H

X § H
i N §

y s i Qw i
o H 3 H
i}‘m&% i * g i
AT § i
H R
i 13%& i
H ¥
i H
{ ot

Nmaduls
\ e
e’

318
Disk by 8

—1
fisd e .
W p e

Nigralion

Bchaost sy

Kiis

Node 208

HG. 1

U.S. Patent Sep. 22, 2015 Sheet 2 of 8 US 9,141,492 B2
20
h
&
Hewoy
b
Opsvaling Bystem
&
Higration
Syt
ol 5‘;;’*‘
gzg ¥EY
ek
5
o £ Chisker &ogs
Reboork Aduplyr /"“‘“"\\ Custe degess Storage Adapler
LRy s
égé zqg &E&%
Loal Storage -
N B A A
¥ / ' :
® gag § ¥ s
ToFrom - TofFrom oo TofFoom
{lenls = Clstor Suiiching Disvdmgy Clusly Suilthing
@ \\.,,«.r-rf/ Fabris g Fabiie
L 8

HG. 2

US 9,141,492 B2

Sheet 3 of 8

Sep. 22, 2015

U.S. Patent

o
<y

e

HHOST 0

}

TEM 3%

Lt
-
wx
x

LUSTER SERWICE

£

s

FRGRATIGN SYRTER S0

HG. 3

US 9,141,492 B2

Sheet 4 of 8

Sep. 22, 2015

U.S. Patent

84S
S
AN

HMigration

From
Hode

=

2

¥

&5

FG. 4

U.S. Patent Sep. 22, 2015 Sheet 5 of 8 US 9,141,492 B2

Migration System
5

Regquest Enging
e

Yorihing Bnging
5

{fffining Englwe
538

Update Engine
N

NN

FIG. 0A

U.S. Patent

Sep. 22, 2015 Sheet 6 of 8

(onfig Table

Claster quonm 81
Yorsion # 8
Max_Smkt 38
Aggregats_atvess 38

FIG. 5B

US 9,141,492 B2

U.S. Patent

Sep. 22, 2015

Sheet 7 of 8

Updste sugragaie ownershin whomation &
50U
&1
¥

.\i
Nolly deaties f,‘f‘ of updsie

Indlats

Undale aggregate st &t datination
Y

Lodate o v"}a & *Eas:e' Tanager

}

2
177

a nodes

:
joy
éi

532
o]

Updab

<.
<

¢
¥

¥

Rouda ¢ &rf se weﬁ,s s destnation baved

FG.6

r4

s

4.

s d

US 9,141,492 B2

Sheet 8 of 8 US 9,141,492 B2

U.S. Patent Sep. 22, 2015

Py

53.71
=

Rasive aggregals migraton requast
716
¥
snvant reguest b soums Usdale sgaregate cwngrahip
748 ¥ nformation
73
¥
& ™\ N N Q‘(“ ¥
Vaerify dagtination Is configursd to
service :’?\gg@‘s« Nolify destination of update
gy 295
) v
%
Varly surce I8 configursd o faeliiate X
migiaion Orine &Q"E“Q?EB 2t dostination
k
¥
Offfine aggrogate sl source
i Route client sequest lo destination
145

HG. 7

US 9,141,492 B2

1
TRANSPARENTLY MIGRATING A STORAGE
OBJECT BETWEEN NODES IN A
CLUSTERED STORAGE SYSTEM

RELATED APPLICATIONS

This application is a continuation application that claims
benefit of U.S. application Ser. No. 12/626,551, which was
filed Nov. 25, 2009.

BACKGROUND

The disclosed subject matter relates to clustered storage
systems, and more particularly, to transparently migrating a
storage object between source and destination nodes by auto-
matically verifying the destination node is configured to ser-
vice the storage object and changing ownership information
of' the storage object based on the verifying to enable servic-
ing of the aggregate at the destination.

A storage server is a computer that provides access to
information that is stored on one or more storage devices
connected to the storage server, such as disk drives (“disks”),
flash memories, or storage arrays. The storage server includes
an operating system that may implement a storage abstraction
layer to logically organize the information as storage objects
on the storage devices. With certain logical organizations, the
storage abstraction layer may involve a file system which
organizes information as a hierarchical structure of directo-
ries and files. Each file may be implemented as set of data
structures, e.g., disk blocks, configured to store information,
such as the actual data for the file. The file system typically
organizes such data blocks as a logical “volume,” with one or
more volumes further organized as a logical “aggregate” for
efficiently managing multiple volumes as a group. In a file
system, each directory, file, volume, and aggregate may con-
stitute a storage object. In other logical organizations, a file
system may constitute a storage object with the storage
abstraction layer managing multiple file systems.

A storage server may be configured to operate according to
a client/server model of information delivery to allow one or
more clients access to data in storage objects stored on the
storage server. In this model, the client may comprise an
application executing on a computer that “connects” to the
storage server over a computer network, such as a point-to-
point link, shared local area network, wide area network or
virtual private network implemented over a public network,
such as the Internet. A client may access the storage devices
by submitting access requests to the storage server, for
example, a “write” request to store client data included in a
request to storage devices or a “read” request to retrieve client
data stored in the storage devices.

Multiple storage servers may be networked or otherwise
connected together as a storage system to distribute the pro-
cessing load of the system across multiple storage servers.
Processing load involves the load on a storage server to ser-
vice storage requests from clients directed to a storage object
(e.g., aggregate) of the storage server. In certain cases, how-
ever, one of the storage servers may be more heavily loaded
than another storage server in the system. Thus, it may be
desirable to offload client requests for an aggregate from one
storage server (source) to another (destination). In other
instances, a source may undergo routine maintenance pro-
cessing or upgrades, so it may also be desirable for a desti-
nation to carry out requests on the aggregate to ensure con-
tinued access to client data during those periods. In these

10

15

20

25

30

35

40

45

55

60

65

2

cases, “ownership” (servicing) of an aggregate by a storage
server may be changed by migrating the aggregate between
storage servers.

One known technique for migrating aggregates involves
copying data of an aggregate from the source to the destina-
tion. However, copy operations may result in increased load
on both the source and destination during migration since
each must still continue to perform normal processing tasks
such as servicing other aggregates. Additionally, copy opera-
tions are not instantaneous and, depending on the size of the
aggregate and the physical distance between storage servers,
alengthy delay in accessing an aggregate may be experienced
by a client. Conventional techniques using copy operations to
migrate aggregates thus tie up system resources such as net-
work bandwidth and may cause increased delays in accessing
client data.

To avoid unwieldy copy operations, another known tech-
nique referred to as “zero-copy migration” may be performed
between storage servers configured in a distributed architec-
ture. Here, storage servers are implemented as “nodes” in the
storage system, where each node accesses a shared pool of
storage containing the aggregates of the system. Although
multiple nodes have physical access to an aggregate in the
shared storage pool, only one of the nodes owns the aggregate
at any one time. In the event a migration operation is desir-
able, a zero-copy migration operation may be performed by
passing ownership of the aggregate to another node without
copying data between physically remote locations. The pass-
ing of ownership may, for instance, be carried out by known
storage protocols operating between the nodes to relinquish
or gain control of the aggregate in shared storage.

In order to enable zero-copy migration, however, a storage
administrator must manually configure each of the nodes in
the system to facilitate ownership changes to the aggregate.
This involves a non-trivial task of configuring the physical
components such as the network interface controllers of the
nodes to enable the hand-off process between the nodes. In
certain cases, this may require unwieldy manual effort on the
part of the administrator, as well as specialized knowledge
and/or skills, in performing the task. Additionally, informa-
tion related to aggregates owned by a particular node must
also be maintained by the client in order to gain network
access to the aggregate. To that end, node and aggregate
information must further be managed by the clients upon
migration so client requests may be directed to the appropri-
ate node.

The conventional zero-copy migration technique is further
deficient if the data storage needs of the administrator change.
For instance, the administrator may desire to enhance the
capability of the cluster to provide additional storage capacity
and/or processing capabilities as storage needs grow. As such,
a storage system which readily scales to such changing needs
would be preferable under these circumstances. However,
using conventional techniques, at least one other node in the
system must be reconfigured by the administrator to extend
the zero-copy migration functionality to a new node added to
the system. Thus, while known techniques for zero-copy
operations do avoid tying up network resources and lengthy
data access delays, other deficiencies still exist with known
techniques for zero-copy migration of aggregates between
storage servers.

SUMMARY

Embodiments of the disclosed subject matter provide a
technique, in a clustered storage system, for transparently
migrating a storage object (e.g., aggregate) between nodes by

US 9,141,492 B2

3

one of the nodes (source) automatically verifying a destina-
tion node (destination) is configured to service the aggregate
and changing ownership of the aggregate based on the veri-
fying to enable servicing of the aggregate at the destination. A
cluster manager for the clustered storage system receives an
aggregate migration request and provides the request to the
source which owns the aggregate. The source verifies with the
destination that the destination is configured to service the
aggregate. Based on the verifying, the source updates owner-
ship information of the aggregate thereby allowing the desti-
nation to own the aggregate. The cluster manager further
provides the updated ownership information to all the nodes
in the cluster, so an access request intended for the aggregate
may bereceived by any node and forwarded to the destination
using the updated ownership information to effect a transpar-
ent migration.

By implementing the novel techniques, aggregate migra-
tion may be performed more efficiently to overcome the defi-
ciencies of conventional copy operations and zero-copy
migration techniques. Since the nodes in the cluster are con-
figured to redirect a storage request to the appropriate desti-
nation, migration operations do not require further processing
and management tasks by the client after a migration opera-
tion and may be performed automatically upon the adminis-
trator invoking or initiating a migration operation. Since the
source automatically verifies that the destination is config-
ured to service the aggregate prior to a migration operation,
migration may be performed between any of the nodes
regardless of whether the nodes are pre-configured to perform
migration operations. Unwieldy configuration tasks by the
administrator are also reduced to provide a scalable storage
system which meets the changing needs of the administrator.

Advantageously, aggregates may be migrated between
nodes to distribute processing load among the nodes or to
otherwise change ownership of an aggregate from a source
node to a destination node. Efficiently change of ownership of
the aggregate may be desirable when performing mainte-
nance or upgrade operations at the source node, for instance,
which would otherwise preclude the source node from ser-
vicing the aggregate during such operations. In this way,
aggregate migration between the nodes may be performed
more efficiently and effectively to optimize use of system
resources and provide improved system performance for car-
rying out storage operations.

Additional aspects of the inventive subject matter will
become apparent from the following detailed description
taken in conjunction with the accompanying drawings, which
illustrate the principles of the inventive subject matter by way
of example.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate an imple-
mentation of the inventive subject matter and, together with
the description, serve to explain the advantages and principles
of the inventive subject matter. In the drawings,

FIG. 1 illustrates a clustered storage system in which the
disclosed subject matter may be implemented;

FIG. 2 is a block diagram of an illustrative embodiment of
special- or general-purpose computer implementing aspects
of'a node from FIG. 1 according to various embodiments of
the disclosed subject matter;

FIG. 3 is a schematic block diagram of a storage operating
system that may be advantageously used with the disclosed
subject matter;

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 is a schematic block diagram illustrating a cluster
manager for coordinating cluster services between nodes in
the clustered storage system of FIG. 1 during a migration
operation in accordance with an embodiment of the disclosed
subject matter;

FIG. 5A is a schematic block diagram illustrating func-
tional components of the novel migration system in which the
disclosed subject matter may be implemented;

FIG. 5B illustrates an exemplary config table for storing
the predetermined configuration of the destination when veri-
fying the destination is configured to service the aggregate in
one embodiment;

FIG. 6 illustrates an exemplary flow diagram for onlining
an aggregate at the destination in accordance with an embodi-
ment of the disclosed subject matter; and

FIG. 7 illustrates an exemplary flow diagram for transpar-
ently migration an aggregate between nodes in a clustered
storage system according to various embodiments of the dis-
closed subject matter.

DETAILED DESCRIPTION

A technique for transparently migrating a storage object
between nodes in a clustered storage system by automatically
verifying a destination node is configured to service the stor-
age object and changing ownership of the storage object to the
destination node based on the verifying is provided herein.
References in this specification to “an embodiment”, “one
embodiment”, or the like, mean that the particular feature,
structure or characteristic being described is included in at
least one embodiment of the disclosed subject matter. Occur-
rences of such phrases in this specification do not necessarily
all refer to the same embodiment, nor are they necessarily
mutually exclusive.

System Overview

FIG. 1 shows an illustrative distributed storage system 100,
also referred to as a “cluster”, in which the disclosed subject
matter can advantageously be implemented in one embodi-
ment. Nodes 200 (nodes 200A, 200B) each implement a
storage server and may be interconnected by a cluster switch-
ing fabric 150, which may be embodied as a Gigabit Ethernet
switch, for instance. Nodes 200 access a storage subsystem
130 that include mass storage devices (e.g., disks) to provide
data storage services to one or more clients 180 through a
network 140. Network 140 may be, for example, a local area
network (LAN), wide area network (WAN), metropolitan
area network (MAN), global area network such as the Inter-
net, a Fibre Channel fabric, or any combination of such inter-
connects. Client 180 may be, for example, a conventional
personal computer (PC), server-class computer, workstation,
handheld computing or communication device, or other spe-
cial or general purpose computer.

Storage of data in disks 130 is managed by nodes 200
which receive and respond to various read and write requests
from client 180, directed to data stored in or to be stored on
disk. Although the illustrative embodiment implements the
storage subsystem as disks, the storage subsystem may in
other embodiments be implemented by other mass storage
devices which can include, for example, flash memory, opti-
cal disks, tape drives, or other similar media adapted to store
information. Disks 130 may further be organized into an array
120 implementing a Redundant Array of Inexpensive Disks
(RAID) scheme, whereby nodes 200 access disks 130 using
one or more RAID protocols known in the art.

Nodes 200 can each provide file-level service such as used
in a network-attached storage (NAS) environment, block-
level service such as used in a storage area network (SAN)

US 9,141,492 B2

5

environment, a service providing both file-level and block-
level access, or any another service capable of providing other
object-level access. Illustratively, each node 200 includes
various functional components that operate to provide a dis-
tributed architecture of a storage server in cluster 100. To that
end, each node 200 is generally organized as a set of modules
including a network element (N-module 310A, 310B), a data
element (D-module 350A, 350B), and a management element
(M-host 301A, 301B), for carrying out storage server opera-
tions. [lustratively, N-module 310 (N-module 310A, 310B)
includes functionality to enable node 200 to connect to client
180 via network 140. In contrast, D-module 350 (D-module
350A, 350B) connects to one or more disks 130 directly
across a fiber channel interconnect for example, or via a
cluster switching fabric 155, which may also be a fiber chan-
nel interconnect, for servicing client requests targeted for
disks 130. Additionally, M-host 301A, 301B provides cluster
services for respective nodes 200 to coordinate operations
between nodes configured in cluster 100.

In one embodiment, an operating system operative in
D-module 350 logically organizes storage in disks 130 as
storage objects such as files, directories, volumes, and aggre-
gates. Client requests received by node 200 (e.g., via N-mod-
ule 310) may include a unique identifier such as an object ID
to indicate a particular storage object on which to carry out the
request. Preferably, only one of the D-modules owns each of
the storage objects on disks 130. For instance, a storage object
may be stored on disks 130A, and may be controlled by
D-module 350A. A storage request targeted for the storage
object may then be received by either N-module 310A or
N-module 310B and forwarded to D-Module 350A via clus-
ter switching fabric 150 for servicing.

Also operative in node 200 is an M-host (M-host 301A,
301B) which provides cluster services for node 200 by man-
aging a data structure such as a replicated database, RDB
(shown in FIG. 2), containing cluster-wide configuration
information used by node 200. The various instances of the
RDB in each of the nodes may be updated periodically by the
M-host to bring the RDB into synchronization with each
other. Synchronization may be facilitated by the M-host
updating the RDB for node 200 and providing the updated
information to the M-hosts of other nodes (e.g., across cluster
switching fabric 150) in the cluster. In one embodiment, the
replicated database (RDB) stores storage object information
used by node 200 to determine which D-module 350 owns
each of the storage objects.

It should be noted that while FIG. 1 shows an equal number
of N- and D modules constituting a node in the illustrative
system, there may be different number of such modules con-
stituting a node in accordance with various embodiments of
the disclosed subject matter. For example, there may be a
number of N-modules and D-modules of node 200A that does
not reflect a one-to-one correspondence between the N- and
D-modules of node 200B. As such, the description of a node
comprising only one N- and D-module for each node 200
should be taken as illustrative only. In addition, certain other
embodiments of storage system 100 may include more than
two nodes so the disclosed subject matter is not so limited to
the exemplary description provided with respect to FIG. 1.

In yet other embodiments, nodes 200 may implement net-
work subsystems which provide networked storage services
for a specific application or purpose. Examples of such appli-
cations may include database applications, web applications,
Enterprise Resource Planning (ERP) applications, etc., e.g.,
implemented in a client. Examples of such purposes may
include file archiving, backup, mirroring, etc., provided, for
example, on archive, backup, or secondary storage systems

10

15

20

25

30

35

40

45

50

55

60

65

6

connected to a primary storage system. A network subsystem
can also be implemented with a collection of networked
resources provided across multiple nodes and/or storage sub-
systems.

As shown in FIG. 1, a cluster manager 400 performs cluster
services for cluster 100 to coordinate activities between nodes
200. In one embodiment, cluster manager 400 may be a
conventional personal computer (PC), server-class computer,
workstation, handheld computing or communication device,
orother special or general purpose computer in some embodi-
ments. In other embodiments, cluster manager 400 may be
implemented as one or more functional components within
other computing devices in cluster 100 and may, for instance,
be implemented within any of nodes 200 for coordinating
cluster services provided by the nodes. Cluster services may
include presenting a distributed storage system image (e.g.,
distributed file system image) for the cluster and managing
the configuration of the nodes, for instance. To that end, a data
structure such a volume location database, VLDB (shown in
FIG. 4), may be managed by cluster manager 400 for central-
ized storage of information related to storage objects in the
cluster and the D-modules owning respective storage objects.
Management element M-host 301C operative in cluster man-
ager 400 may then communicate with the M-hosts of the
nodes (e.g., M-host 301A, 301B) to ensure that information
stored in the various instances of the RDBs are synchronized
with information in the VLDB.

Tustratively, cluster 100 implements a novel migration
system 500 for transparently migrating an aggregate between
nodes 200. Advantageously, aggregates may be migrated
between nodes 200 to distribute processing load among nodes
200 or to otherwise change ownership of an aggregate from a
source node (e.g., node 200A) to a destination node (e.g.,
node 200B) for performing maintenance or upgrade opera-
tions at the source node, for instance, which would otherwise
preclude the source node from servicing the aggregate during
such operations. Portions of system 500 may be implemented
in nodes 200 and cluster manager 400 for carrying out opera-
tions at each of the respective devices in accordance with
certain embodiments of the disclosed subject matter. In
operation, system 500 may receive a migration request at
cluster manager 400 which involves migrating an aggregate
on disks 130A owned by D-module 350A of node 200A to
node 200B. The request may then be forwarded to node 200A
across cluster switching fabric 150 as indicated in the VLDB,
where it is received by D-module 350A via cluster switching
fabric 150.

Upon receipt, D-module 350A may communicate with
D-module 350B to verify that D-module 350B is configured
to service the aggregate. Based on the verifying, D-module
350A offlines the aggregate to halt servicing of the aggregate
and updates the ownership information of the aggregate.
Upon the updating, the aggregate may be onlined by D-mod-
ule 350B to resume service to the aggregate at D-module
350B. D-module 350B further sends the updated aggregate
configuration to cluster manager 400, which synchronizes the
updated aggregate configuration with the replicated data-
bases (RDBs) in each of nodes 200. A request targeted for the
aggregate may then be received by either of N-modules 310
and forwarded to D-module 350B based on the synchronized
RDB:s.

Computer Architecture

FIG. 2 is a schematic block diagram of a node (e.g., node
200) embodied as a general- or special-purpose computer
comprising a processor 222, a memory 224, a network
adapter 225, a cluster access adapter 226, a storage adapter
228 and a local storage 230 interconnected by a system bus

US 9,141,492 B2

7

223. Cluster access adapter 226 may comprise one or more
ports adapted to couple the node to other nodes in a cluster
(e.g., cluster 100). In the illustrative embodiment, Ethernet is
used as the clustering protocol and interconnect media,
although it will be apparent to those skilled in the art that other
types of protocols and interconnects may be utilized within
the cluster architecture described herein.

Local storage 230 comprises one or more storage devices,
such as disks or flash memory, utilized by the node to locally
store cluster-wide configuration information in a data struc-
ture such as replicated database (RDB) 235. In contrast,
memory 224, which may store RDB 235 in other embodi-
ments, comprises storage locations addressable by processor
222 and adapters 225, 226, 228 for storing program instruc-
tions and data structures associated with the disclosed subject
matter. Processor 222 and adapters 225, 226, 228 may, in turn,
comprise processing elements and/or logic circuitry config-
ured to execute program instructions and manipulate data
structures. A storage operating system 300, portions of which
is typically resident in memory 224 and executed by the
processing elements (e.g., processor 222), functionally orga-
nizes the node by invoking storage operations in support of
the storage services implemented by the node. It will be
apparent to those skilled in the art that other processing and
memory means, including various computer readable media,
may be used for storing and executing program instructions
pertaining to the inventive subject matter described herein.

Network adapter 225 comprises one or more ports adapted
to couple the node to one or more clients (e.g., client 180) over
point-to-point links, wide area networks, virtual private net-
works implemented over a public network (Internet) or a
shared local area network. Network adapter 225 thus may
comprise the mechanical, electrical and signaling circuitry
needed to connect the node to network 140, for instance. Each
client may communicate with the node over the network by
exchanging discrete frames or packets of data according to
pre-defined protocols, such as TCP/IP.

Storage adapter 228 cooperates with storage operating sys-
tem 300 executing on the node to access information
requested by the clients. The information may be stored on
any type of attached array of storage devices (e.g., array 120)
such as tape, disks, flash memory and any other similar media
adapted to store information. Preferably, storage adapter 228
comprises a plurality of ports having input/output (I/O) inter-
face circuitry that couples to the disks over an 1/O intercon-
nect arrangement, such as a conventional high-performance,
FC link topology. [llustratively, storage arrays in the cluster
are configured as a storage subsystem providing a shared
storage pool of the cluster. The node may then access the
storage arrays either directly via storage adapter 228 or indi-
rectly via cluster access adapter 226.

Portions of a novel migration system (e.g., system 500) are
further operative in storage operating system 300 for trans-
parently migrating an aggregate owned by one node to
another node. System 500 may be implemented as instruc-
tions stored in memory 224 and executed by processor 222, in
one embodiment. Functionality of system 500 for communi-
cating with a cluster manager (e.g., cluster manager 400) and
carrying out inter-nodal communications in the cluster may
be performed via cluster adapter 226. Preferably, ownership
information for each aggregate may be stored as metadata for
the aggregate stored in an identifiable location within the
aggregate and accessible via storage adapter 228. It will be
apparent to those skilled in the art that other processing and
memory means, including various computer readable media,
may be used for storing and executing program instructions
pertaining to the inventive subject matter described herein.

10

15

20

25

30

35

40

45

50

55

60

65

8

To facilitate access to the storage subsystem, storage oper-
ating system 300 implements a file system, such as a write-
anywhere file system, that cooperates with one or more
abstraction layers to “virtualize” the storage space provided
by the storage subsystem. The file system logically organizes
the information as a hierarchical structure of storage objects
such as named directories and files on the disks. Each file may
be implemented as set of data blocks configured to store
information whereas the directory may be implemented as a
specially formatted file in which names and links to other files
and directories are stored. The abstraction layer allows the file
system to further logically organize information as a hierar-
chical structure of blocks that are exported as named logical
unit numbers (luns) in certain embodiments.

In the illustrative embodiment, storage operating system
300 is preferably the NetApp® Data ONTAP® operating
system available from NetApp, Inc., Sunnyvale, Calif., that
implements a Write Anywhere File Layout (WAFL®) file
system. However, it is expressly contemplated that any appro-
priate storage operating system may be enhanced for use in
accordance with the inventive principles described herein. As
such, where the term “WAFL” is employed, it should be taken
broadly to refer to any abstraction layer or system that is
otherwise adaptable to the teachings of this inventive subject
matter.

Storage Operating System

FIG. 3 is a schematic block diagram of a storage operating
system (e.g., storage operating system 300) that may be
advantageously used with the disclosed subject matter. The
storage operating system comprises a series of software lay-
ers executed by a processor (e.g., processor 222) and orga-
nized to form an integrated network protocol stack or, more
generally, a multi-protocol engine 325 that provides data
paths for clients to access information stored on the node
using block and file access protocols.

Multi-protocol engine 325 includes a media access layer
312 of network drivers (e.g., gigabit Ethernet drivers) that
interface with network protocol layers, such as the IP layer
314 and its supporting transport mechanisms, the TCP layer
316 and the User Datagram Protocol (UDP) layer 315. A file
system protocol layer provides multi-protocol file access and,
to that end, includes support for the Direct Access File System
(DAFS) protocol 318, the NFS protocol 320, the CIFS pro-
tocol 322 and the Hypertext Transfer Protocol (HTTP) pro-
tocol 324. A VI layer 326 implements the VI architecture to
provide direct access transport (DAT) capabilities, such as
RDMA, as required by the DAFS protocol 318. An iSCSI
driver layer 328 provides block protocol access over the TCP/
IP network protocol layers, while a FC driver layer 330
receives and transmits block access requests and responses to
and from the node. The FC and iSCSI drivers provide respec-
tive FC- and iSCSI-specific access control to the blocks and,
thus, manage exports of luns to either iSCSI or FCP or,
alternatively, to both iSCSI and FCP when accessing blocks
on the node.

To provide operations in a support of cluster services for
the node, a cluster services system 336 may also be imple-
mented in the storage operating system as a software layer
executed by the processor of the node. System 336 may
generate information sharing operations for providing a high-
level, distributed file system image across nodes in the cluster.
In one embodiment, media access layer 312 receives infor-
mation in the form of a packet from a cluster manager (e.g.,
cluster manager 400) which may be processed by IP layer 314
or TCP layer 316, for instance. The processed packet may
then be forwarded to system 336, for example, to synchronize
an RDB (e.g., RDB 235) of the node by updating the RDB

US 9,141,492 B2

9

with information contained in the packet from the cluster
manager. Similarly, system 336 may provide information
related to local configuration updates to the cluster manager
by generating packets to be provided by media access layer
312 to the cluster manager.

The storage operating system also includes a series of
software layers organized to form a storage server 365 that
provides data paths for accessing information stored on disks
(e.g., disks 130) attached of the node. Storage of information
is preferably implemented as one or more storage objects that
comprise a collection of disks cooperating to define an overall
logical arrangement. In one embodiment, the logical arrange-
ment may involve logical volume block number (vbn) spaces,
wherein each aggregate is associated with a unique vbn.

The underlying disks constituting the vbn space are typi-
cally organized as one or more groups, wherein each group
may be operated as a Redundant Array of Independent (or
Inexpensive) Disks (RAID). Most RAID implementations
enhance the reliability/integrity of data storage through the
redundant writing of data “stripes” across a given number of
physical disks in the RAID group, and the appropriate storing
of parity information with respect to the striped data. An
illustrative example of a RAID implementation is a RAID-
DP® implementation available from NetApp, Inc., Sunny-
vale, Calif., although it should be understood that other types
and levels of RAID implementations may be used in accor-
dance with the inventive principles described herein. To that
end, the node may include a file system module 360 in coop-
eration with a RAID system module 380 and a disk driver
system module 390. RAID system 380 manages the storage
and retrieval of information to and from aggregates on the
disks in accordance with 1/O operations, while disk driver
system 390 implements a device access protocol such as, e.g.,
the SCSI protocol.

File system 360 implements a virtualization system of the
storage operating system through the interaction with one or
more virtualization modules illustratively embodied as, e.g.,
a SCSItarget module 335. The virtualization module enables
access by administrative interfaces, such as a command line
or graphical user interface, in response to an administrator
issuing commands to the node (e.g., N-module). SCSI target
module 335 is generally disposed between drivers 328, 330
and file system 360 to provide a translation layer of the
virtualization system between the block (lun) space and the
file system space, where luns are represented as blocks.

File system 360 illustratively implements the WAFL file
system having an on-disk format representation that is block-
based using, e.g., 4 kilobyte (KB) blocks and using index
nodes (“inodes”) to identity files and file attributes (such as
creation time, access permissions, size and block location).
File system 360 uses files to store metadata describing the
layout of its file system, including an inode file. A file handle
(i.e. an identifier that includes an inode number) is used to
retrieve an inode from the disk.

Broadly stated, all inodes of file system 360 are organized
into the inode file. A file system (fs) info block specifies the
layout of information in the file system and includes an inode
of'a file that includes all other inodes of the file system. Each
aggregate has an fsinfo block that is stored at an identifiable
location within, e.g., a RAID group. The inode of the inode
file may directly reference (point to) data blocks of the inode
file or may reference indirect blocks of the inode file that, in
turn, reference data blocks of the inode file. Within each data
block of the inode file are embedded inodes, each of which
may reference indirect blocks that, in turn, reference data
blocks of a file.

10

15

20

25

30

35

40

45

50

55

60

65

10

Operationally, a request from a client is forwarded as a
packet over the network and onto the node where it is received
at a network adapter (e.g., adapter 225). A network driver
such as layer 312 or layer 330 processes the packet and, if
appropriate, passes it on to a network protocol and file access
layer for additional processing prior to forwarding to file
system 360. Here, file system 360 generates operations to
load (retrieve) the requested data from the disks if it is not
resident “in core”, i.e., in memory 224. If the information is
not in memory, file system 360 indexes into the inode file
using the Mode number to access an appropriate entry and
retrieve a logical vbn. The file system then passes a message
structure including the logical vbn to the RAID system 380;
the logical vbn is mapped to a disk identifier and device block
number (e.g., disk, dbn) and sent to an appropriate driver
(e.g., SCSI) of disk driver system 390. The disk driver
accesses the dbn from the specified disk and loads the
requested data block(s) in memory 224 for processing by the
node. Upon completion of the request, the node (and operat-
ing system 300) returns a reply to the client over the network.

It should be noted that the software “path” through the
storage operating system layers described above needed to
perform data storage access for the client request received at
the node adaptable to the teachings of the inventive subject
matter may alternatively be implemented in hardware. That
is, in an alternate embodiment of the inventive subject matter,
a storage access request data path may be implemented as
logic circuitry embodied within a field programmable gate
array (FPGA) or an application specific integrated circuit
(ASIC). This type of hardware implementation increases the
performance of the storage service provided by the node in
response to a request issued by a client. Moreover, in another
alternate embodiment of the inventive subject matter, the
processing elements of adapters 225, 228 may be configured
to offload some or all of the packet processing and storage
access operations, respectively, from processor 222, to
thereby increase the performance of the storage service pro-
vided by the node. It is expressly contemplated that the vari-
ous processes, architectures and procedures described herein
can be implemented in hardware, firmware or software.

As used herein, the term “storage operating system” gen-
erally refers to the computer-executable code operable on a
computer to perform a storage function that manages data
access and may, in the case of a node, implement data access
semantics of a general purpose operating system. The storage
operating system can also be implemented as a microkernel,
an application program operating over a general-purpose
operating system, such as UNIX® or Windows XP®, or as a
general-purpose operating system with configurable func-
tionality, which is configured for storage applications as
described herein.

In addition, it will be understood to those skilled in the art
that the inventive subject matter described herein may apply
to any type of special-purpose (e.g., file server, filer or storage
serving appliance) or general-purpose computer, including a
standalone computer or portion thereof, embodied as or
including a storage system. Moreover, the teachings of this
inventive subject matter can be adapted to a variety of storage
system architectures including, but not limited to, a network-
attached storage environment, a storage area network and
disk assembly directly-attached to a client or host computer.
The term “storage system” should therefore be taken broadly
to include such arrangements in addition to any subsystems
configured to perform a storage function and associated with
other equipment or systems. It should be noted that while this
description is written in terms of a write any where file sys-

US 9,141,492 B2

11

tem, the teachings of the disclosed subject matter may be
utilized with any suitable file system, including conventional
write in place file systems.

CF Protocol

In the illustrative embodiment, a node is embodied as
D-module 350 of the storage operating system 300 to service
one or more aggregates on disk. In addition, multi-protocol
engine 325 is embodied as N-module 310 to perform protocol
termination with respect to a client issuing incoming data
access request packets over the network, as well as to redirect
those data access requests to any node in the cluster. System
336 further implements an M-host (e.g., M-host 301) to pro-
vide cluster services for providing a distributed file system
image for the cluster. To that end, the modules of the node
cooperate to provide a highly-scalable, distributed storage
system architecture of the cluster.

Tlustratively, a cluster fabric (CF) interface module 340
(CF interface modules 340A, 340B) may be adapted to imple-
ment intra-cluster communication between the modules
within the cluster for storage system operations described
herein. Such communication may be effected by a D-module
exposing a CF application programming interface (API) to
which an N-module (or another D-module) issues calls. To
that end, a CF interface module 340 can be organized as a CF
encoder/decoder. The CF encoder of, e.g., CF interface 340A
on N-module 310 can encapsulate a CF as (i) a local proce-
dure call (LPC) when communicating a file system command
to a D-module 350 residing on the same node or (ii) a remote
procedure call (RPC) when communicating the command to
a D-module residing on a remote node of the cluster (e.g., via
cluster switching fabric 150). In either case, the CF decoder of
CF interface 340B on D-module 350 de-encapsulates the CF
message and processes the file system command.

Notably, functionality in support of a distributed file sys-
tem image for the cluster may be provided by system 336
indicating the appropriate D-module 350 to which a client
request should be forwarded. A client request received by
N-module 310 may be processed by system 336 for determin-
ing the D-module owning the aggregate identified in the
request. For instance, system 336 may access information
stored in a replicated database (e.g., RDB 235) for making the
determination. N-module 310 may then generate a CF mes-
sage to be delivered to the appropriate D-module for carrying
out the request. Thus, a network port of any N-module may
receive a client request and access any aggregate within the
distributed file system image.

Further to the illustrative embodiment, each of the modules
is implemented as separately-scheduled processes of storage
operating system 300. However, in an alternate embodiment,
portions of these modules may be implemented as executable
instructions within a single operating system process. In yet
other embodiments, each of the modules may be imple-
mented in firmware, hardware, or a combination of processor-
executed software in accordance with certain embodiments of
the disclosed subject matter. For instance, each module may
constitute at least a processor and memory for generating
operations in support of its respective operations.

In FIG. 3, a novel migration system (e.g., system 500) is
further operative in the storage operating system for effecting
atransparent migration of an aggregate between a source and
destination node. Illustratively, a migration request may be
provided by the cluster manager (e.g., cluster manager 400) to
the D-module of the source node. The D-module may then
communicate with a D-module of the destination node to
verify that the destination D-module is configured to service
the aggregate, and to facilitate the change in ownership of the
aggregate based on the verifying. The migration system fur-

25

30

35

40

45

55

12

ther operates with system 336 to update configuration infor-
mation in the RDB of the destination node and to synchronize
the update across all the nodes.

Cluster Manager

FIG. 4 is a schematic block diagram illustrating a cluster
manager (e.g., cluster manager 400 shown in FIG. 1) opera-
tive with a storage operating system of a node (e.g., storage
operating system 300) to manage cluster services for a cluster
(e.g., cluster 100). Preferably, the cluster manager is imple-
mented in a computing device connected, e.g., via cluster
switching fabric 150, to the nodes (e.g., nodes 200) in the
cluster. To that end, the cluster manager may be implemented
in a device including at least a processor, memory, and cluster
access adapter for carrying out operations of the cluster man-
ager. In other embodiments, however, it will be appreciated
that the functional components of cluster manager may be
implemented or distributed across various other devices in the
cluster such as within a node (e.g., node 200), so the inventive
subject matter is not so limited to the embodiment discussed
herein.

Tustratively, the cluster manager manages a data structure
such as a volume location database (VLDB) 430 and synchro-
nizes the various instances of the replicated databases, RDB
(e.g., RDB 235) across the nodes. Configuration information
of'the nodes, such as the storage objects owned by each node,
may betracked in a centralized location at the cluster manager
using VLDB 430 to provide a distributed file system image to
aclient (e.g., client 180) to facilitate routing of client requests
to nodes of the cluster. In the illustrative embodiment, VLDB
430 maps a storage object identifier such as an aggregate ID
to the D-module of the source node which owns the aggre-
gate. The aggregate ID may be generated by a storage abstrac-
tion layer (e.g., file system layer 360 from FIG. 3) of a
D-module constructing the aggregate, for example. To that
end, the D-module constructing the aggregate may be the
D-module of the source for instance.

In addition, VLLDB 430 includes a plurality of entries, each
constituting at least an aggregate ID and a D-module ID,
which s accessed by the cluster manager when synchronizing
the RDBs across the nodes. In other embodiments, VLDB
430 may include at least the aggregate ID and anode ID where
each node includes only one D-module. In yet other embodi-
ments, an indicator other than a D-module ID or node ID may
be included in an entry of VLDB 430 for uniquely identifying
the D-module owning the aggregate. Illustratively, indicators
such as the D-module ID, node 1D, or other unique identifier
associated with the D-module may be generated by the stor-
age operating system of the node during initialization of the
node or a component of the node. In this way, the cluster
manager may access VLDB 430 when routing aggregate
migration requests to a source node. Although VL.DB 430 is
discussed herein in reference to volumes, it will be appreci-
ated that other embodiments of the illustrative data structure
managed by the cluster manager for tracking the ownership of
storage objects may involve tracking aggregates constituting
one or more volumes or tracking other storage objects in
accordance with teachings of the disclosed subject matter.

Synchronization of RDBs, in one embodiment, may be
carried out by the cluster manager receiving updates from a
node undergoing a configuration change. For instance, a con-
figuration change may involve a node no longer servicing an
aggregate or a node newly servicing an aggregate upon a
migration operation. The node may then provide the updated
information to the cluster manager, which is stored in VLDB
430. Thereafter, the cluster manager may provide the updated
information to each of the RDBs of the nodes based on the
information in VLDB 430. Alternatively, updates may be

US 9,141,492 B2

13

provided to the RDBs on a periodic basis (e.g., pre-deter-
mined time intervals) or in response to other events such as
initialization of a new node. In this way, the RDB may be
synchronized to reflect the current cluster configuration.

Preferably, an administrator 470 of the cluster interfaces
with the cluster manager for requesting the migration of an
aggregate to a destination node. Administrator 470 may inter-
face with the cluster manager through command line inter-
faces or graphical user interfaces, for instance, to provide an
aggregate ID and D-module ID to which the aggregate should
be migrated. In other embodiments, a migration request may
be automatically generated by the cluster manager monitor-
ing events in the cluster. For instance, an event may include a
node achieving a network bandwidth threshold, a perfor-
mance threshold, a storage threshold, or any other threshold
for an operating characteristic of the node, and may be sup-
plied by administrator 470 to the cluster manager. Network
bandwidth may include the rate of data transfer through a
given communication path, whereas performance threshold
may include the amount of processing performed compared
to the time and resources of the node used to carry out the
processing. In contrast, storage threshold may include an
available storage capacity or an amount of storage capacity
already used by the node. Administrator 470 may also provide
additional migration information such as an aggregate ID and
destination D-module ID (or node ID) for automatically per-
forming the migration upon monitoring the event.

To that end, the cluster manager may carry out operations
for monitoring the event by querying a node for information
related to the event. One such operation may involve periodi-
cally requesting operating characteristic information from a
node (e.g., via cluster switching fabric 150). Upon reaching
the threshold for the operating characteristic, the cluster man-
ager may automatically generate a request to migrate the
indicated aggregate to the predetermined destination node
and provide the request to the appropriate source node.
Migration System

Shown in FIG. 5A is an exemplary embodiment of a novel
migration system (e.g., system 500) implementing tech-
niques of the disclosed subject matter. Preferably, the migra-
tion system may be embodied as one or more software-ex-
ecuting processors operative in the clustered nodes and
cluster manager for implementing the functional components
of'the migration system. In other embodiments, aspects of the
migration system may be implemented as firmware, hard-
ware, or a combination of firmware, hardware, and software-
executing processors in accordance with various embodi-
ments of the inventive subject matter. Accordingly, it will be
appreciated that the inventive subject matter is not so limited
to the embodiment described herein.

Tlustratively, components of the migration system include
a request engine 510, a verifying engine 520, an offlining
engine 530, and an update engine 540. Request engine 510
may receive a request to migrate an aggregate to a destination
node when an administrator (e.g., administrator 470) inter-
faces with the cluster manager to initiate the migration opera-
tion. Alternatively, the request may be automatically gener-
ated by request engine 510 when the cluster manager
monitors an event at a node, for instance. Upon the cluster
manager monitoring the event, request engine 510 may
retrieve from memory an aggregate ID and a destination
D-module ID, for example, supplied by the administrator at
an earlier point in time. Whether receiving or generating a
migration request, request engine 510 determines the node
which presently owns the aggregate (source) and forwards the
migration request to the source. In one embodiment, deter-
mination of the source may be performed by accessing the

10

15

20

25

30

35

40

45

50

55

60

65

14

VLDB of the cluster manager (e.g., VLDB 430), retrieving
the D-modules ID (or node ID) associated with the aggregate
1D in the VLDB, and forwarding the migration request to the
node associated with the retrieved node ID.

Verifying engine 520 performs operations in support of a
source automatically verifying a configuration of the destina-
tion. Verifying the configuration may involve the source
requesting (e.g., via cluster switching fabric 150) confirma-
tion from the destination that the destination is configured to
service the aggregate and the destination determining
whether the destination is configured to service the aggregate.
In one embodiment, the destination is configured to service
the aggregate when the destination operates in accordance
with a predetermined configuration. The predetermined con-
figuration may involve one or more operating characteristics
of the node required to service the aggregate. The predeter-
mined configuration may be implemented as a data structure
such as a configuration table (config table) stored in memory
of'the destination (e.g., memory 224 from FIG. 2), where each
entry in the config table constitutes an operating characteris-
tic for the predetermined configuration. FIG. 5B illustrates an
exemplary config table 550 for storing the predetermined
configuration of the destination which may be supplied by the
administrator to a node during initialization, for example, or
provided as part of the manufacturing process of the node.

One exemplary operating characteristic of config table 550
may involve the presence of a cluster quorum at a node as
indicated by a field of config table 550, cluster_quorum 551.
Presence of a cluster quorum at a node means that the node is
operative to service storage requests. To determine whether
the cluster quorum is present at the destination, verifying
engine 520 may query the operating system of the destination
to determine the operating mode of the destination. For
instance, the destination operates in a “normal” mode when
ordinary operations of a storage server, including servicing
storage requests, are being carried out at the destination. At
certain times, however, the destination may operate in
“degraded mode” involving limited storage server function-
ality when a storage component fails or during routine
upgrade and maintenance, for example. The modes may be
set automatically by the storage operating system detecting a
failure or receiving a request by the administrator to perform
upgrade operations, for instance. When a failure is restored or
anupgrade operation completes, the storage operating system
of the node may automatically change the mode back to
“normal,” or alternatively, changes to the mode may be per-
formed manually by the administrator. Upon querying the
storage operating system and determining the destination is
operative in the normal mode, a cluster quorum is considered
present at the destination.

Other exemplary operating characteristics may include
existence of a particular software version number (indicated
by a field of config table 550, version_#552) and a current
configuration which is not at maximum storage limits (indi-
cated max_limit 553). The software version number may be
verified by querying the operating system for a version and
comparing the version provided by the querying to the ver-
sion indicated in version_#552 of config table 550. Verifying
engine 520 may also determine a storage limit status by
querying the operating system for information related to the
file system layer (e.g., file system 360), for instance. Illustra-
tively, the file system layer operative at the destination may
only manage a certain number of aggregates, so if managing
an additional aggregate would exceed the capabilities of the
file system then the destination would not be configured to
service a migrated aggregate. To that end, verifying engine
520 may query the operating system for the maximum num-

US 9,141,492 B2

15

ber of aggregates permitted by the file system layer and the
current number of aggregates managed by the file system
layer. If maximum number and the current number match,
then verifying engine 520 determines that storage limits
would be exceeded as a result of the migration operation. In
these cases, verifying engine 520 would result in a failure to
confirm a configuration of the destination. It will be appreci-
ated that although the exemplary embodiment is discussed in
relation to a file system and aggregates, other storage abstrac-
tion layers may be implemented by the storage operating
system for determining the maximum and current number of
storage objects managed by the storage abstraction layer in
accordance with the teachings of the disclosed subject matter.

Yet another exemplary operating character may involve
accessibility by the destination to all the disks of the aggre-
gate as indicated by aggregate access 554 in config table 550.
In one embodiment, verifying engine 520 may determine the
set of physical disks which constitute the aggregate by que-
rying the source for such information. Using the list of disks
provided by the source resulting from the querying, the des-
tination may then attempt to access each disk indicated by the
source. If the attempted access is successtul (e.g., attempted
disk access by the destination does not result in any “read” or
other errors), then verifying engine 520 confirms that the
destination is capable of accessing disks of the aggregate.

It will be appreciated that the novel migration system may
implement all or none of the operating characteristics above
constituting the predetermined configuration of the destina-
tion; but rather, or in addition to, other operating characteris-
tics different from those described above may be included in
the predetermined configuration when determining whether
the destination is configured to service the aggregate as indi-
cated by field 555. When the operating characteristics of
config table 550 have been confirmed by verifying engine
520, the destination operates in accordance with the prede-
termined configuration and is thus configured to service the
aggregate.

In certain embodiments, verifying engine 520 may further
be operative to determine whether the source is configured to
facilitate the migration operation. The source may be consid-
ered to be configured to facilitate the migration operation a
proper operating condition exists at the source to permit
migration. In one example, when other operations are not
actively being performed on the aggregate which would oth-
erwise be disrupted during a migration operation, then the
proper operating conditions exists at the source to permit
migration. In this way, the migration system may ensure that
carrying out a migration operation on the aggregate will not
interrupt other potentially critical operations being performed
on the aggregate. Exemplary active operations precluding a
migration operation may thus include operations in support of
fault tolerance, maintenance, and servicing of access
requests, for instance. In the event active operations are being
performed on the aggregate, then proper operating conditions
at the source do not exist thereby precluding a migration
operation.

To that end, a veto check on the source may be invoked by
verifying engine 520 to query one or more modules within the
storage operation system of the source to determine whether
certain operations are being performed on the aggregate. Veri-
fying engine 520 may access a list of modules stored in a data
structure (e.g., stored in memory 224) which indicates the
particular modules to be queried. In one example, the RAID
module (e.g. RAID system module 380) may be queried to
determine whether operations such as mirroring data across
disks, adding disks to the aggregate, recovering from a disk
failure on which the aggregate resides, or other fault-tolerant

10

15

20

25

30

35

40

45

50

55

60

65

16

operations are being performed on the aggregate to preclude
migration. The file system module (e.g., file system module
390) may be queried to determine whether maintenance
operations or servicing of an access request is actively being
performed on the aggregate. Other modules of the storage
operating system may also be queried in accordance with
certain embodiments of the disclosed subject matter to deter-
mine whether other respective operations are actively being
performed on the aggregate to preclude the migration opera-
tion. Preferably, if the modules return a response to the stor-
age operating system indicating that no active operations are
being performed on the aggregate, then proper operating con-
ditions are considered to exist at the source permitting a
migration operation. A result of the veto check then includes
a negative response indicating operating conditions at the
source permit the migration operation, whereas a positive
response indicates active operations currently being carried
out at the source thus precluding a migration operation.

In other embodiments, proper operating conditions at the
source may be determined based on a state of the aggregate.
The aggregate state may be implemented as an indictor asso-
ciated with the aggregate (e.g., stored in memory 224) for
indicating whether the aggregate may be migrated. It may be
desirable for an aggregate to remain owned by the source due
to optimal system performance, source configuration, or
other operating conditions for which it may be preferable for
the source to continue servicing the aggregate, for instance.
Ilustratively, the aggregate state may be supplied by the
administrator interfacing with the source at a user console of
the source (e.g., using command line or graphical user inter-
faces), or may automatically be set by the storage operating
system of the source managing the aggregate. For instance,
the storage operating system may automatically set the aggre-
gate state based on a particular characteristic of the source
storage server or the aggregate itself which may be supplied
by the administrator upon initializing the source storage
server or programmed by a manufacturer of the storage
server.

Tustratively, the aggregate may be associated with a first
indicator (e.g., “no”) indicating that migration is not permit-
ted or a second indicator (e.g., “yes”) indicating that migra-
tion is permitted. It will be appreciated that different aggre-
gate states and/or indicators may be implemented in
accordance with other embodiments so the disclosed subject
matter is not limited to the exemplary descriptions provided
herein. To determine proper operating conditions at the
source based on an aggregate state, a veto check may be
performed by verifying engine 520 involving accessing the
location of the indicator for the aggregate state to determine
whether the aggregate state permits migration. When the
aggregate state permits migration, the source is thus consid-
ered to have a proper operating condition for permitting
migration.

Offlining engine 530 also operative in the migration system
offlines the aggregate to ensure that data of the aggregate does
not change during the migration. In one embodiment, offlin-
ing involves denying storage requests from clients so data of
the aggregate does not change during a migration process. To
that end, upon a client request to access the aggregate on disk,
offlining engine 530 may respond to the request with an error
or failure message. In other embodiments, client requests
may be cached in memory (e.g., memory 224) at the source
until the destination takes ownership of the aggregate. For
example, responsive to an update to the local RDB indicating
the destination as the new owner of the aggregate, offlining
engine 530 may forward the cached client requests to the
destination for servicing by the destination.

US 9,141,492 B2

17

Tustratively, update engine 540 performs operations in
support of onlining the aggregate at the destination to resume
servicing of the aggregate at the destination. FIG. 6 illustrates
a flow diagram 600 of an exemplary processes performed by
update engine 540 to online the aggregate at the destination.
At block 610, update engine 540 operative at the source
modifies the ownership information of the aggregate to
enable servicing of the aggregate by the destination. Owner-
ship information may be stored (e.g., on disk 130 of FIG. 1) in
metadata of the aggregate in an identifiable location within
the aggregate. Metadata describes information about the user
data stored in the aggregate and may include a D-module ID
of the source node which owns the aggregate, for instance. In
one embodiment, ownership information may be stored to a
metadata location by the file system of the D-module (e.g.,
file system 360) upon creation of the aggregate. In other
embodiments, ownership information may be stored in a
metadata location on disk by the storage operating system
(e.g., storage operating system 300) accessing the identifiable
location. Ownership information is therefore updated by the
source accessing the identifiable metadata location of the
aggregate and modifying the D-module ID to indicate the
destination D-module instead of the source D-module.

Thereafter, update engine 540 may be operative to send a
message from the source node to the destination node to
notify the destination of the update upon completion of the
update (block 620). Responsive to the notification, update
engine 540 operative at the destination reads the metadata for
the aggregate to verify that the destination is indicated
therein. The notification may also include, for instance, the
physical location of the aggregate (e.g., on disks 130) to
provide such information from the source to the destination.
At block 630, the file system of the destination updates its list
of aggregates to include the new aggregate. Update engine
540 may then send an update request to the cluster manager to
update the aggregate ownership information in the VLDB
(block 640). In one embodiment, upon detecting a change, the
cluster manager sends a request to the various M-hosts (e.g.,
M-host 301) in the cluster to update the local instances of the
RDBs (block 650). Alternatively, the updated configuration
information may be sent by the cluster manager to each of the
nodes on a predetermined periodic basis as supplied by the
storage administrator. In certain embodiments where offlin-
ing engine 530 caches client requests during migration, stored
client requests may also be forwarded by offlining engine 530
upon an update to the RDB at the source.

Upon updating the local instances of the RDBs, client
requests for the aggregate may be received by any of the
nodes and forwarded to the destination rather than the source
in accordance with the updated aggregate ownership infor-
mation (block 660). Since the destination is now operative to
service requests on the aggregate, the aggregate is considered
to be “online” at the destination thereby resuming servicing
of'the aggregate at the destination. Advantageously, the client
need not perform any additional tasks such as processing
ownership information at the client to ensure the request is
directed to the appropriate node. Additionally, since verifying
engine 520 confirms that the destination is configured to
service the aggregate prior to an actual migration, resources
of the clustered node need not be specifically configured to
enable a transparent migration.

Transparently Migrating an Aggregate

FIG. 7 illustrates a flow diagram of an exemplary process
700 for transparently migrating an aggregate between a
source (e.g., node 200A) and destination (e.g., node 200B) in
a cluster (e.g., cluster 100). Illustratively, a novel migration
system (e.g., system 500) carries out operations in support of

25

30

40

45

18

automatically verifying the destination is configured to ser-
vice the aggregate and updating ownership information ofthe
aggregate based on the verifying to enable servicing of the
aggregate by the destination.

At block 710, a request to migrate an aggregate to a desti-
nation is received by a request engine (e.g., request engine
510) of the migration system. The request may include an
aggregate ID and a destination node ID for indicating the
destination to which the aggregate should be migrated. Alter-
natively, the request engine may automatically generate a
request based on a cluster manager monitoring an event.
Information of the migration may be provided by an admin-
istrator (e.g., administrator 470) of the cluster at an earlier
point in time, and retrieved from memory when the event is
monitored. The request engine further processes the request
by determining the node which owns the aggregate. Here, the
VLBD of the cluster manager may be accessed by the request
engine for retrieving a D-module ID associated with the
aggregate. The request may then be forwarded by the request
engine (block 715) to the D-module of the source.

Upon receipt of the request, a verifying engine (e.g., veri-
fying engine 520) of the migration system automatically veri-
fies that the destination is configured to service the aggregate
(block 720). In one embodiment, verification involves deter-
mining whether a destination is configured in accordance
with a predetermined configuration. For instance, the prede-
termined configuration may be stored in instances of a config
table stored in each of the nodes for indicating one or more
operating characteristics of the node required in order to
service the aggregate. Exemplary operating characteristics
may include operating in a cluster quorum and operating with
a particular operating system version. [llustratively, the veri-
fying engine performs the task of determining at the destina-
tion whether each operating characteristic has been met.
Based on whether all the operating characteristics have been
met, the verifying engine may respond to the verification
request (e.g., via a message across the network) either a
positive or negative response to the source.

In certain embodiments, the verifying engine may further
be operative to determine the source is configured to facilitate
amigration operation (block 722). For example, the verifying
engine may invoke a veto check at the source to determine that
active operations are not being performed on the aggregate,
thereby permitting the aggregate to be migrated to the desti-
nation. Here, the RAID layer and file system layer may be
queried, for instance, at the source to indicate that no opera-
tions are being performed by the respective layers on the
aggregate. A negative result from the veto check thus indi-
cates the source is properly configured to facilitate the migra-
tion operation.

Upon determining the source and destination are respec-
tively configured to facilitate the migration operation and
service the aggregate, the source may offline the aggregate
(block 725) to avoid further updates to the aggregate while
ownership information is updated. Here, an offlining engine
(e.g., offlining engine 530) operative in the migration system
denies requests to the aggregate or, in other cases, caches
requests in memory until the aggregate is onlined at the des-
tination. When the aggregate is later onlined, the offlining
engine may supply the stored requests to the destination for
servicing by the destination.

At block 730, ownership information of the aggregate may
be updated by an update engine (e.g., update engine 540) to
indicate the destination instead of the source. The updating
may be performed at the source followed by a notification to
the destination that an update was performed (block 735). The
update may be performed by the update engine accessing an

US 9,141,492 B2

19

identifiable location storing metadata of the aggregate to
modify the D-module ID to reference the destination instead
of the source.

In response to receiving the update notification from the
source, the update engine may online the aggregate at the
destination (block 740) by accessing the metadata of the
aggregate at the destination. The file system of the destination
may then update the list of aggregates managed at the desti-
nation based on reading the updated metadata of the aggre-
gate. An update request is further sent from the destination to
cluster manager to update information in the VLDB to indi-
cate the new ownership information of the aggregate. Infor-
mation in the RDBs may also be updated by the cluster
manager providing the update to the various nodes. The
aggregate and its constituent volumes are thereby onlined at
the destination since the destination is operative to service
requests on the aggregate.

When the cluster receives a request targeted for the aggre-
gate, the requests may then be directed to the destination
(block 745) following a migration operation. To that end, any
node in the cluster may receive the requests and access its
instance of the RDB to determine that the destination now
owns the node. The request may then be forwarded to the
destination for servicing. In this way, migration operations
may be transparently performed since the client need not keep
track of aggregate ownership information and may simply
continue issuing storage requests to the cluster regardless of
which node owns the aggregate.

By implementing the novel techniques, aggregate migra-
tion may be performed more efficiently to overcome the defi-
ciencies of conventional copy operations and zero-copy
migration techniques. Since the nodes in the cluster are con-
figured to redirect a storage request to the appropriate desti-
nation, migration operations do not require further processing
and management tasks by the client after a migration opera-
tion. Migration may be performed as between any of the
nodes regardless of whether the nodes are pre-configured as a
result of the source node automatically verifying the destina-
tion is configured to service the aggregate prior to a migration
operation. Unwieldy configuration tasks by the administrator
are also reduced to provide a scalable storage system which
meets the changing needs of the administrator. In this way, the
novel techniques may optimize use of system resources and
provide improved system performance for carrying out stor-
age operations.

Although the disclosed subject matter for purpose of expla-
nation has been described with reference to specific exem-
plary embodiments, it will be understood that the inventive
subject matter is not limited to the embodiments described. A
person of ordinary skill in the art would understand that the
disclosed subject matter can be practiced with modifications
and alternations to those embodiments or can be practiced in
other embodiments within the spirit and scope of the
appended claims.

Moreover, non-dependent acts may be performed in paral-
lel. The embodiments were chosen and described in order to
best explain the principles of the inventive subject matter and
its practical applications, to thereby enable others skilled in
the art to best utilize the inventive subject matter and various
embodiments with various modifications as are suited to the
particular use contemplated.

Furthermore, the use of the phrase “one embodiment”
throughout does not necessarily mean the same embodiment.
Although these particular embodiments of the inventive sub-
ject matter have been described, the inventive subject matter
should not be limited to these particular embodiments.

40

45

55

60

65

20

Accordingly, the specification and drawings are to be
regarded in an illustrative sense rather than a restrictive sense.

Unless specifically stated otherwise, it is to be appreciated
that throughout the discussions utilizing terms such as “pro-
cessing” or “computing” or “calculating” or “determining” or
the like refer to the action and processes of a computer system
or similar electronic computing device that manipulates and
transforms data represented as physical (e.g. electronic)
quantities within the computer systems registers and memo-
ries into other data similarly represented as physical quanti-
ties within the computer system.

The disclosed subject matter can be implemented by an
apparatus for performing the operations herein. This appara-
tus may be specially constructed for the required purposes or
it may comprise a machine, such as a general purpose com-
puter selectively activated or reconfigured by a computer
program (such as a collection of instructions for execution by
a machine or processor for example) stored in the computer.
Such a computer program may be stored in a computer read-
able storage medium, such as, but not limited to any type of
disk including floppy disks, optical disks, magnetic optical
disks, read-only memories, random access memories,
EPROMS, EEPROMS, magnetic or optical cards or any type
of media suitable for storing physical (e.g. electronic) data
structures and each coupled directly or indirectly to a com-
puter system bus (or the like) for access. Each of these media
may be coupled to a computer system bus through use of an
appropriate device for reading and or for writing the media.

Use of the phrase “at least one of . . . or” should not be
construed to be exclusive. For instance, the phrase “X com-
prises at least one of A, B, or C” does not mean that X
comprises only one of {A, B, C}; it does not mean that X
comprises only one instance of each of {A, B, C}, even if any
one of {A, B, C} is a category or sub-category; and it does not
mean that an additional element cannot be added to the non-
exclusive set (i.e., X can comprise {A, B, Z}.

What is claimed is:

1. A method comprising:

in response to receipt of a request to change request ser-

vicing for a logical organization of a plurality of storage
objects from a first node to a second node,

determining that the second node can service requests that

target the logical organization based, at least in part, on
configuration data of the second node,

wherein determining that the second node can service

requests that target the logical organization comprises
determining a software version indicated in the configu-
ration data of the second node;

halting servicing by the first node of client requests that

target the logical organization after said determining that
the second node can service requests that target the
logical organization;
changing data about the logical organization from indicat-
ing the first node to indicating the second node; and

communicating to a clustered storage system that the sec-
ond node services client requests that target the logical
organization,

wherein the clustered storage system includes the first node

and the second node.

2. The method of claim 1 further comprising receiving,
from a managing node of the clustered storage system, the
request to change request servicing for the logical organiza-
tion from the first node to the second node.

3. The method of claim 1 further comprising:

determining that specified operations are not being per-

formed on the logical organization, wherein said halting
servicing by the first node of client requests that target

US 9,141,492 B2

21

the logical organization occurs after said determining
that the specified operations are not being performed on
the logical organization.

4. The method of claim 3, wherein the specified operations
include at least one of a fault tolerance operation, a mainte-
nance operation, or an access request servicing operation.

5. The method of claim 1, wherein said determining that the
second node can service requests that target the logical orga-
nization based, at least in part, on configuration data of the
second node comprises the first node querying the second
node as to the configuration data and determining whether the
configuration data of the second node satisfies one or more
configuration criteria.

6. The method of claim 1, wherein said determining that the
second node can service requests that target the logical orga-
nization further comprises at least one of determining
whether the configuration data of the second node indicates
that the second node is configured to service storage requests,
determining whether the configuration data of the second
node indicates an operating mode that allows the second node
to service storage requests, and determining a storage limit
indicated in the configuration data of the second node.

7. The method of claim 1, wherein said communicating to
the clustered storage system that the second node services
client requests that target the logical organization comprises:

the second node communicating to a managing node that

request servicing for the logical organization has
changed to the second node; and

the managing node communicating to nodes of the clus-

tered storage system that request servicing for the logi-
cal organization has changed to the second node.

8. One or more computer readable storage media having
machine executable program instructions stored thereon, the
machine executable program instructions comprising pro-
gram instructions to:

in response to receipt of a request to change request ser-

vicing for a logical organization of a plurality of storage
objects from a first node to a second node,

determine whether the second node can service requests

that target the logical organization based, at least in part,
on configuration data of the second node,

wherein the program instructions to determine whether the

second node can service requests that target the logical
organization comprises program instructions to deter-
mine a software version indicated in the configuration
data of the second node;

halt servicing by the first node of client requests that target

the logical organization after a determination that the
second node can service requests that target the logical
organization;
change data about the logical organization from indicating
the first node to indicating the second node; and

communicate to a clustered storage system that the second
node services client requests that target the logical orga-
nization, wherein the clustered storage system includes
the first node and the second node.

9. The one or more computer readable storage media of
claim 8, wherein the program instructions to halt servicing by
the first node of client requests that target the logical organi-
zation comprise program instructions to store, by the first
node, client requests targeting the logical organization until
after the data about the logical organization is changed to
indicate the second node instead of the first node.

10. The one or more computer readable storage media of
claim 9, wherein the program instructions further comprise
program instructions to communicate to the second node

35

40

45

50

55

60

22

client requests stored while servicing, by the first node, of
client requests that target the logical organization were
halted.
11. The one or more computer readable storage media of
claim 10, wherein the program instructions to communicate
to the second node the client requests stored while servicing,
by the first node, of client requests that target the logical
organization were halted comprise program instructions to
communicate the stored client requests to the second node in
response to an update to locally stored information, wherein
the update indicates that the second node services client
requests targeting the logical organization.
12. The one or more computer readable storage media of
claim 8, wherein the wherein the program instructions to halt
servicing by the first node of client requests that target the
logical organization comprise program instructions to
respond to client requests that target the logical organization
with an indication of an error.
13. The one or more computer readable storage media of
claim 8, wherein the program instructions further comprise
program instructions to:
determine that specified operations are not being per-
formed on the logical organization, wherein halting ser-
vicing by the first node of client requests that target the
logical organization occurs after a determination that the
specified operations are not being performed on the logi-
cal organization.
14. The one or more computer readable storage media of
claim 13, wherein the specified operations include at least one
of'a fault tolerance operation, a maintenance operation, or an
access request servicing operation.
15. The one or more computer readable storage media of
claim 8, wherein the program instructions to determine that
the second node can service requests that target the logical
organization based, at least in part, on configuration data of
the second node comprises program instructions to query the
second node as to the configuration data and determine
whether the configuration data of the second node satisfies
one or more configuration criteria.
16. The one or more computer readable storage media of
claim 8, wherein the program instructions to determine
whether the second node can service requests that target the
logical organization further comprise program instructions
to, at least one of, determine whether the configuration data of
the second node indicates that the second node is configured
to service storage requests, determine whether the configura-
tion data of the second node indicates an operating mode that
allows the second node to service storage requests, and deter-
mine a storage limit indicated in the configuration data of the
second node.
17. An apparatus comprising:
a processor;
a network interface; and
a machine readable storage medium having program
instructions stored therein, the program instructions
executable by the processor to cause the apparatus to,

in response to receipt of a request to change request ser-
vicing for a logical organization of a plurality of storage
objects from the apparatus to a different apparatus,

determine whether the different apparatus can service
requests that target the logical organization based, at
least in part, on configuration data of the different appa-
ratus,

wherein the program instructions to determine whether the

different apparatus can service requests that target the
logical organization comprises program instructions to

US 9,141,492 B2

23

determine a software version indicated in the configura-
tion data of the different apparatus;

halt servicing by the apparatus of client requests that target
the logical organization after a determination that the
different apparatus can service requests that target the 5
logical organization;

change data about the logical organization from indicating
the apparatus to indicating the different apparatus; and

communicate to a clustered storage system that the difter-

ent apparatus services client requests that target the logi- 10

cal organization, wherein the clustered storage system
includes the apparatus and the different apparatus.

18. The apparatus of claim 17, wherein the program

instructions executable by the processor to cause the appara-

tus to halt servicing by the apparatus of client requests that 5

target the logical organization comprise program instructions
to store client requests targeting the logical organization until
after the data about the logical organization is changed to
indicate the different apparatus instead of the apparatus.

24

19. The apparatus of claim 18, wherein the program
instructions further comprise program instructions execut-
able by the processor to cause the apparatus to communicate
to the different apparatus client requests stored while servic-
ing, by the apparatus, of client requests that target the logical
organization were halted.

20. The apparatus of claim 19, wherein the program
instructions executable by the processor to cause the appara-
tus to communicate to the different apparatus the client
requests stored while servicing, by the first apparatus, of
client requests that target the logical organization were halted
comprise program instructions executable by the processor to
cause the apparatus to communicate the stored client requests
to the different apparatus in response to an update to locally
stored information, wherein the update indicates that the dif-
ferent apparatus services client requests targeting the logical
organization.

